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SIMULATOR
Decision support systems (DSS), such as Bolus Calculators, become
increasingly complex due to the variety of integrated devices (Smart 
Pens) and di� erent patient behaviors. Simulators have been successfully 
used for AID algorithm development but the models are mostly
limited to patient physiology1. Our simulator allows a holistic description 
of therapy management by adding behavioral and device-specifi c models 
(Figure 1). This allows realistic end-to-end tests without imposing
patient risk. 

COMPONENTS
The simulator’s modular design allows arbitrary confi gurations of varying 
complexity. At the core, Patient Physiology describes glucose dynamics 
with a second order di� erential equation2. The Environment provides
a daily rhythm of situations (i.e. sleep, work), meals and special events
(device failure). The technical setup (tools) in the example above
consists of a CGM and connected Smart Pen including device specifi c 
characteristics such as uncertainties, connectivity loss and delays.
Finally, the Behavior models the virtual patient’s therapy decisions. The 
patient can interact with the devices and DSS (tools) but does not have 
to. Decisions are based on patient characteristics, physiological state, 
environmental context, available DSS and previous actions. Connecting 
the various components allows simulation of holistic diabetes self 
management (Figure 2). Instead of modeling probabilistic disturbances 
such as unannounced meals explicitly, it is the patient decisions and
actions that challenge the system and result in a broad range of
alternative outcomes.
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BEHAVIORAL MODEL
User research identifi ed recurring daily jobs and associated actions in
diabetes therapy3. Jobs arise as a result of physiological state,
environmental contexts and events. The action taken by the user depends 
on the situation,  available tools, personal traits and previous actions.
We integrate this domain knowledge into a probabilistic model using 
Markov Chains with variable transition probabilities (Figure 3).
A node represents a patient action uj. Transitions to the next action ui

are modeled as situation dependent probability functions
fij(•) —>   [0,1] : ∑n

j=1 fij(•) = 1. Each action triggers a sequence of
events in the simulator.

RESULTS
Decisions taken by the virtual patients are probabilistic but the
sequence of action paths follow realistic decision patterns. As a result, 
simulations cover a wide range of alternative scenarios and outcomes as 
illustrated in Figure 4. Each simulation results in di� erent therapy decisi-
ons and physiological states. The changing level of device
utilization results in  di� erent levels of available information
(i.e. meal announcements, insulin data, airshots, ...) for the DSS
under development.

CONCLUSION
A holistic diabetes therapy management simulator has been developed.
The probabilistic and modular design combined with a underlying
behavioral model allows the simulation of realistic device interactions
making it a useful tool for in-silico development. In ongoing e� orts,
the simulator is utilized to generate artifi cial data sets and is planned
for use in pre-clinical end-to-end tests.

Figure 2: Simulation of 48 hours results in alternative decisions and outcomes. The fi gure also illustrates the interaction
between Environment (top), diabetes-related jobs of the behavioral model (mid) and Patient Physiology (bottom).

Figure 1: Simulation Environment Components

Figure 3: A simplifi ed example to showcase how a Markov Chain can be used to  model a  meal-related job. In the full
implementation, this model was extended to account for airshots, bolus splitting and monitoring BGL after the meal. 

Figure 4: The same situation results in di� erent outcomes due to di� erent user decisions. In the upper simulation,
path s-u1-u2-u4-u6-t (Figure 3) was chosen for the “Stay in range after meal” job (yellow). The lower simulation followed
the path s-u6-t, which led to the generation of other jobs and actions later in time.


